These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformations of poly{G}-poly{C} pi stacks with high hole mobility.
    Author: Voityuk AA.
    Journal: J Chem Phys; 2008 Jan 28; 128(4):045104. PubMed ID: 18248011.
    Abstract:
    Charge transfer properties of DNA depend strongly on the pi stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V(2), between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G(15). The average value of the coupling squared <V(2)> is found to be 0.0065 eV(2). Then we analyze the base-pair and step parameters of the configurations in which V(2) is at least an order of magnitude larger than <V(2)>. To obtain more consistent data, approximately 65,000 configurations of the (G:C)(2) stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20 degrees) are of special interest, because the pi stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30 degrees and 35 degrees, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist> or =38 degrees) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics.
    [Abstract] [Full Text] [Related] [New Search]