These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast.
    Author: Schwarzer S, Kolacna L, Lichtenberg-Fraté H, Sychrova H, Ludwig J.
    Journal: FEMS Yeast Res; 2008 May; 8(3):405-13. PubMed ID: 18248412.
    Abstract:
    It has been shown previously that heterologous expression of inwardly rectifying potassium channels (K+-channels) from plants and mammals in K+-transport defective yeast mutants can restore the ability of growth in media with low [K+]. In this study, the functional expression of an outward rectifying mammalian K+-channel in yeast is presented for the first time. The outward-rectifying mammalian neuronal K+-channel rat ether à go-go channel 1 (rEAG1, Kv 10.1) was expressed in yeast (Saccharomyces cerevisiae) strains lacking the endogenous K+-uptake systems and/or alkali-metal-cation efflux systems. It was found that a truncated channel version, lacking almost the complete intracellular N-terminus (rEAG1 Delta 190) but not the full-length rEAG1, partially complemented the growth defect of K+-uptake mutant cells (trk1,2 Delta tok1 Delta) in media containing low K+ concentrations. The expression of rEAG1 Delta 190 in a strain lacking the cation efflux systems (nha1 Delta ena1-4 Delta) increased the sensitivity to high monovalent cation concentrations. Both phenotypes were observed, when rEAG1 Delta 190 was expressed in a trk1,2 Delta and nha1, ena1-4 Delta mutant strain. In the presence of K+-channel blockers (Cs+, Ba2+ and quinidine), the growth advantage of rEAG1 Delta 190 expressing trk1,2 tok1 Delta cells disappeared, indicating its dependence on functional rEAG1 channels. The results demonstrate that S. cerevisiae is a suitable expression system even for voltage-gated outward-rectifying mammalian K+-channels.
    [Abstract] [Full Text] [Related] [New Search]