These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Noise adaptive soft-switching median filter. Author: Eng HL, Ma KK. Journal: IEEE Trans Image Process; 2001; 10(2):242-51. PubMed ID: 18249615. Abstract: Existing state-of-the-art switching-based median filters are commonly found to be nonadaptive to noise density variations and prone to misclassifying pixel characteristics at high noise density interference. This reveals the critical need of having a sophisticated switching scheme and an adaptive weighted median filter. We propose a novel switching-based median filter with incorporation of fuzzy-set concept, called the noise adaptive soft-switching median (NASM) filter, to achieve much improved filtering performance in terms of effectiveness in removing impulse noise while preserving signal details and robustness in combating noise density variations. The proposed NASM filter consists of two stages. A soft-switching noise-detection scheme is developed to classify each pixel to be uncorrupted pixel, isolated impulse noise, nonisolated impulse noise or image object's edge pixel. "No filtering" (or identity filter), standard median (SM) filter or our developed fuzzy weighted median (FWM) filter will then be employed according to the respective characteristic type identified. Experimental results show that our NASM filter impressively outperforms other techniques by achieving fairly close performance to that of ideal-switching median filter across a wide range of noise densities, ranging from 10% to 70%[Abstract] [Full Text] [Related] [New Search]