These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Robust adaptive spread-spectrum receiver with neural net preprocessing in non-Gaussian noise. Author: Chuah TC, Sharif BS, Hinton OR. Journal: IEEE Trans Neural Netw; 2001; 12(3):546-58. PubMed ID: 18249887. Abstract: Multiuser communications channels based on code division multiple access (CDMA) technique exhibit non-Gaussian statistics due to the presence of highly structured multiple access interference (MAI) and impulsive ambient noise. Linear adaptive interference suppression techniques are attractive for mitigating MAI under Gaussian noise. However, the Gaussian noise hypothesis has been found inadequate in many wireless channels characterized by impulsive disturbance. Linear finite impulse response (FIR) filters adapted with linear algorithms are limited by their structural formulation as a simple linear combiner with a hyperplanar decision boundary, which are extremely vulnerable to impulsive interference. This raises the issues of devising robust reception algorithms accounting at the design stage the non-Gaussian behavior of the interference. We propose a multiuser receiver that involves an adaptive nonlinear preprocessing front-end based on a multilayer perceptron neural network, which acts as a mechanism to reduce the influence of impulsive noise followed by a postprocessing stage using linear adaptive filters for MAI suppression. Theoretical arguments supported by promising simulation results suggest that the proposed receiver, which combines the relative merits of both nonlinear and linear signal processing, presents an effective approach for joint suppression of MAI and non-Gaussian ambient noise.[Abstract] [Full Text] [Related] [New Search]