These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sildenafil inhibits duodenal contractility via activation of the NO-K+ channel pathway. Author: Clemente CM, Araújo PV, Palheta RC, Ratts ZM, Fernandes GH, Rola FH, de Oliveira RB, dos Santos AA, Magalhães PJ. Journal: Fundam Clin Pharmacol; 2008 Feb; 22(1):61-7. PubMed ID: 18251723. Abstract: Phosphodiesterase type-5 (PDE5) specifically cleaves cyclic guanosine monophosphate (cGMP), a key intracellular secondary messenger. The PDE5 inhibitor sildenafil is a well-known vasodilator that also has gastrointestinal myorelaxant properties. In the present study, we further investigated sildenafil-induced myorelaxation in rat isolated duodenum, assessing its interaction with nitric oxide (NO) synthase and K(+) channel opening. The spontaneous contractions of duodenal strips were reversibly inhibited by sildenafil (0.1-300 microM) in a concentration-dependent manner [mean (95% confidence interval); EC(50) = 6.8 (2.7-17.3) microM]. The sildenafil-induced myorelaxation was significantly decreased by the NO synthase inhibitor N-nitro-L-arginine methyl ester [increasing the EC(50) value to 41.9 (26.1-67.3) microM]. Sodium nitroprusside or forskolin pretreatments enhanced the sildenafil-induced myorelaxation. In isolated strips pretreated with BaCl(2) (0.2 mM), 4-aminopyridine (4-AP, 3 mM), or glybenclamide (1 microM), the sildenafil-induced EC(50) value was significantly increased to 32.8 (19.1-56.4), 27.1 (15.2-48.3) and 20.1 (16.4-24.7) microM, respectively. Minoxidil (50 microM) or diazoxide (100 microM) also significantly attenuated the sildenafil-induced potency. In conclusion, the NO synthase/cyclic nucleotide pathway activation is involved in sildenafil-induced inhibition of spontaneous duodenal contractions. Its pharmacological action seems to be influenced by K(+) channel opening, especially the voltage-sensitive ones, being inhibited by 4-AP and K(ATP) channels, sensitive to glybenclamide.[Abstract] [Full Text] [Related] [New Search]