These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of UV-B radiation on seed yield of Glycine max and an assessment of F1 generation progeny for carryover effects. Author: Chimphango SB, Brown CF, Musil CF, Dakora FD. Journal: Physiol Plant; 2007 Nov; 131(3):378-86. PubMed ID: 18251877. Abstract: Glycine max (L.) Merr plants were grown outdoors in potted sand exposed to elevated ultraviolet-B (UV-B) radiation provided by filtered fluorescent lamps to determine the effects of UV-B on seed yield and UV-B-induced carryover effects in the F1 generation. Increased UV-B radiation had no detectable effects on reproductive parameters except for a reduction on seed number per plant and an increase in the number of unseeded pods per plant and dry weight of unseeded pods per plant in the field supplemental UV-B experiment. Studies on carryover effects in the greenhouse progeny growth trial also showed no effect of parental treatment with UV-B on biomass production, and most symbiotic-N traits and plant metabolite measured. However, the concentrations of N in nodules and starch in roots were significantly increased in the F1 generation progeny from elevated UV-B radiation relative to their F1 counterparts from ambient radiation. Assessing the effects of seed size on plant growth and symbiotic function in the F1 progeny showed that total biomass, dry matter yield of individual organs (leaves, stems, roots and nodules), total plant N and fixed-N rose with increasing seed size. Seed concentration of flavonoids was also enhanced with increasing seed size. These findings suggest that subtle changes did occur in the F1 generation progeny of parental plants exposed to elevated UV-B with potential to accumulate with further exposure to elevated UV-B radiation.[Abstract] [Full Text] [Related] [New Search]