These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GABA(B) receptor-mediated presynaptic inhibition of glycinergic transmission onto substantia gelatinosa neurons in the rat spinal cord. Author: Choi IS, Cho JH, Jeong SG, Hong JS, Kim SJ, Kim J, Lee MG, Choi BJ, Jang IS. Journal: Pain; 2008 Aug 31; 138(2):330-342. PubMed ID: 18258370. Abstract: The GABA(B) receptor-mediated presynaptic inhibition of glycinergic transmission was studied from young rat substantia gelatinosa (SG) neurons using a conventional whole-cell patch clamp technique. Action potential-dependent glycinergic inhibitory postsynaptic currents (IPSCs) were recorded from SG neurons in the presence of 3 mM kynurenic acid and 10 microM SR95531. In these conditions, baclofen (30 microM), a selective GABA(B) receptor agonist, greatly reduced the amplitude of glycinergic IPSCs and increased the paired-pulse ratio. Such effects were completely blocked by 3 microM CGP55845, a selective GABA(B) receptor antagonist, indicating that the activation of presynaptic GABA(B) receptors decreases glycinergic synaptic transmission. Glycinergic IPSCs were largely dependent on Ca2+ influxes passing through presynaptic N- and P/Q-type Ca2+ channels, and these channels contributed equally to the baclofen-induced inhibition of glycinergic IPSCs. However, the baclofen-induced inhibition of glycinergic IPSCs was not affected by either 100 microM SQ22536, an adenylyl cyclase inhibitor, or 1 mM Ba2+, a G-protein coupled inwardly rectifying K+ channel blocker. During the train stimulation (10 pulses at 20 Hz), which caused a marked synaptic depression of glycinergic IPSCs, baclofen at a 30 microM concentration completely blocked glycinergic synaptic depression, but at a 3 microM concentration it largely preserved glycinergic synaptic depression. Such GABA(B) receptor-mediated dynamic changes in short-term synaptic plasticity of glycinergic transmission onto SG neurons might contribute to the central processing of sensory signals.[Abstract] [Full Text] [Related] [New Search]