These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DHEA decreases HIF-1alpha accumulation under hypoxia in human pulmonary artery cells: potential role in the treatment of pulmonary arterial hypertension.
    Author: Dessouroux A, Akwa Y, Baulieu EE.
    Journal: J Steroid Biochem Mol Biol; 2008 Mar; 109(1-2):81-9. PubMed ID: 18261897.
    Abstract:
    Previous work showed that dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary artery hypertension in rat via targeting smooth muscle cells. In our study, DHEA was tested on human pulmonary arterial smooth muscle cells (HPASMC) to identify its mechanism of action under hypoxia in vitro. We show that DHEA decreased HIF-1alpha accumulation under both "chemical hypoxia" with treatment by the iron chelator deferroxamin and gas hypoxia (1% O2). The mRNA levels of HIF-1alpha were unchanged whether or not DHEA was applied under chemical and gas hypoxia, as compared to controls in normoxia, suggesting a post-transcriptional effect of the steroid. Protein levels of prolyl hydroxylases responsible for HIF-1alpha degradation were not modified by DHEA treatment. In addition, a synthetic derivative of DHEA, 3beta-methyl-Delta5-androsten-17-one (which cannot be metabolized), was as active as DHEA on HIF-1alpha accumulation, as well as testosterone and 17beta-estradiol (E2). In HPASMC cultures under normoxia and both types of hypoxia, DHEA gave rise to Delta5-androstene-3beta,17beta-diol (ADIOL) and DHEA-sulfate (DHEA-S). Neither testosterone, nor E2 were found. In addition, ADIOL, DHEA-S, 7alpha-hydroxy-DHEA and Delta4-androstene-3,17-dione were ineffective on HIF-1alpha accumulation. The effect of DHEA per se reducing HIF-1alpha accumulation may be relevant to reduced hypoxia effects in pulmonary arterial hypertension.
    [Abstract] [Full Text] [Related] [New Search]