These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo characterization of the effects of human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, on the modulation of pain in mice. Author: Fu CY, Zhao YL, Dong L, Chen Q, Ni JM, Wang R. Journal: Brain Behav Immun; 2008 Aug; 22(6):850-60. PubMed ID: 18262387. Abstract: Human hemokinin-1 (h HK-1) and its truncated form h HK-1(4-11) are mammalian tachykinin peptides encoded by the recently identified TAC4 gene in human, and the biological functions of these peptides have not been well investigated. In the present study, an attempt has been made to investigate the effects and mechanisms of action of h HK-1 and h HK-1(4-11) in pain modulation at the supraspinal level in mice using the tail immersion test. Intracerebroventricular (i.c.v.) administration of h HK-1 (0.3, 1, 3 and 6 nmol/mouse) produced a dose- and time-related antinociceptive effect. This effect was significantly antagonized by the NK(1) receptor antagonist SR140333, but not by the NK(2) receptor antagonist SR48968, indicating that the analgesic effect induced by i.c.v. h HK-1 is mediated through the activation of NK(1) receptors. Interestingly, naloxone, beta-funaltrexamine and naloxonazine, but not naltrindole and nor-binaltorphimine, could also block the analgesic effect markedly, suggesting that this effect is related to descending mu opioidergic neurons (primary mu(1) subtype). Human HK-1(4-11) could also induce a dose- and time-dependent analgesic effect after i.c.v. administration, however, the potency of analgesia was less than h HK-1. Surprisingly, SR140333 could not modify this analgesic effect, suggesting that this effect is not mediated through the NK(1) receptors like h HK-1. SR48968 could modestly enhance the analgesic effect induced by h HK-1(4-11), indicating that a small amount of h HK-1(4-11) may bind to NK(2) receptors. Furthermore, none of the opioid receptor (OR) antagonists could markedly block the analgesia of h HK-1(4-11), suggesting that the analgesic effect is not mediated through the descending opioidergic neurons. Blocking of delta ORs significantly enhanced the analgesia, indicating that delta OR is a negatively modulatory factor in the analgesic effect of h HK-1(4-11). It is striking that bicuculline (a competitive antagonist at GABA(A) receptors) effectively blocked the analgesia induced by h HK-1(4-11), suggesting that this analgesic effect is mediated through the descending inhibitory GABAergic neurons. The novel mechanism involved in the analgesic effect of h HK-1(4-11), which is different from that of h HK-1, may pave the way for a new strategy for the investigation and control of pain.[Abstract] [Full Text] [Related] [New Search]