These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigations into the synthesis and fluorescence properties of Tb(III) complexes of a novel bis-beta-diketone-type ligand and a novel bispyrazole ligand. Author: Xiao LX, Luo YM, Chen Z, Li J, Tang RR. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov 15; 71(2):321-5. PubMed ID: 18262837. Abstract: A novel bis-beta-diketone organic ligand, 1,1'-(2,6-bispyridyl)bis-3-(p-methoxyphenyl)-1,3-propanedione (L1) and its derivatives, a novel bispyrazole ligand, 2,6-bis(5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (L2) were designed and synthesized and their complexes with Tb(III) ion were successfully prepared. The ligands and the corresponding metal complexes were characterized by elemental analysis, infrared, proton nuclear magnetic resonance spectroscopy and TG-DTA. Analysis of the IR spectra suggested that the lanthanide metal ion Tb(III) coordinated to the ligands via the nitrogen atom of the pyridine ring and the carbonyl oxygen atoms for ligand L1 and the nitrogen atom of the pyrazole ring for ligand L2. The fluorescence properties of the two complexes in solid state were investigated and it was discovered that the Tb(III) ions could be sensitized by both the ligand (L1) and ligand (L2) to some extent. In particular, the complex of ligand (L2) is a better green luminescent material that could be used as a candidate material in organic light-emitting devices (OLEDs) since it could be much better sensitized by the ligand (L2), and the fluorescence intensity of Tb(III) complex of L2 are almost as twice strong as L1's.[Abstract] [Full Text] [Related] [New Search]