These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The application of multiwavelet filterbanks to image processing. Author: Strela V, Heller PN, Strang G, Topiwala P, Heil C. Journal: IEEE Trans Image Process; 1999; 8(4):548-63. PubMed ID: 18262898. Abstract: Multiwavelets are a new addition to the body of wavelet theory. Realizable as matrix-valued filterbanks leading to wavelet bases, multiwavelets offer simultaneous orthogonality, symmetry, and short support, which is not possible with scalar two-channel wavelet systems. After reviewing this theory, we examine the use of multiwavelets in a filterbank setting for discrete-time signal and image processing. Multiwavelets differ from scalar wavelet systems in requiring two or more input streams to the multiwavelet filterbank. We describe two methods (repeated row and approximation/deapproximation) for obtaining such a vector input stream from a one-dimensional (1-D) signal. Algorithms for symmetric extension of signals at boundaries are then developed, and naturally integrated with approximation-based preprocessing. We describe an additional algorithm for multiwavelet processing of two-dimensional (2-D) signals, two rows at a time, and develop a new family of multiwavelets (the constrained pairs) that is well-suited to this approach. This suite of novel techniques is then applied to two basic signal processing problems, denoising via wavelet-shrinkage, and data compression. After developing the approach via model problems in one dimension, we apply multiwavelet processing to images, frequently obtaining performance superior to the comparable scalar wavelet transform.[Abstract] [Full Text] [Related] [New Search]