These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recovery of rod photoresponses in ABCR-deficient mice. Author: Pawar AS, Qtaishat NM, Little DM, Pepperberg DR. Journal: Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2743-55. PubMed ID: 18263807. Abstract: PURPOSE: The ABCR protein of the rod outer segment is thought to facilitate movement of the all-trans retinal photoproduct of rhodopsin bleaching out of the disc lumen. This study was undertaken to investigate the extent to which ABCR deficiency affects the post-bleach recovery of the rod photoresponse in ABCR-deficient (abcr-/-) mice. METHODS: Electroretinographic (ERG) a-wave responses were recorded from abcr-/- mice and two control strains. A bright probe flash was used to examine the course of rod recovery after fractional rhodopsin bleaches of approximately 10(-6), approximately 3 x 10(-5), approximately 0.03, and approximately 0.30 to approximately 0.40. RESULTS: Dark-adapted abcr-/- mice and control animals exhibited similar normalized near-peak amplitudes of the paired-flash-ERG-derived, weak-flash response. Response recovery after approximately 10(-6) bleaching exhibited an average exponential time constant of 319, 171, and 213 ms, respectively, in the abcr-/- and the two control strains. Recovery time constants determined for approximately 3 x 10(-5) bleaching did not differ significantly among strains. However, those determined for the approximately 0.03 bleach indicated significantly faster recovery in abcr-/- mice (2.34 +/- 0.74 minutes) than in the controls (5.36 +/- 2.20 and 5.92 +/- 2.44 minutes). After approximately 0.30 to approximately 0.40 bleaching, the initial recovery in the abcr-/- mice was, on average, faster than in control mice. CONCLUSIONS: By comparison with control animals, abcr-/- mice exhibit faster rod recovery after a bleach of approximately 0.03. The data suggest that ABCR in normal rods may directly or indirectly prolong all-trans retinal clearance from the disc lumen over a significant bleaching range, and that the essential function of ABCR may be to promote the clearance of residual amounts of all-trans retinal that remain in the discs long after bleaching.[Abstract] [Full Text] [Related] [New Search]