These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Kinetic properties of sodium transport pathways in the river lamprey Lampetra fluviatilis erythrocytes]. Author: Ivanova TI, Sherstobitov AO, Gusev GP. Journal: Zh Evol Biokhim Fiziol; 2007; 43(6):468-73. PubMed ID: 18265557. Abstract: To activate Na+/H+ exchange, intracellular pH (pHi) of erythrocytes of the river lamprey Lampetra fluviatilis were changed from 6 to 8 using nigericin. The Na+/H+ exchanger activity was estimated from the values of amiloride-sensitive components of Na+ (22Na) inflow or of H+ outflow from erythrocytes. Kinetic parameters of the carrier functioning were determined by using Hill equation. Dependence of Na+ and H+ transport on pHi value is described by hyperbolic function with the Hill coefficient value (n) close to 1. Maximal rate of ion transport was within the limits of 9-10 mmol/l cells/min, and the H+ concentration producing the exchanger 50% activation amounted to 0.6-1.0 microM. Stimulation of H+ outcome from acidified erythrocytes (pHi 5.9) with increase of H+ concentration in the incubation medium is described by Hill equation with n value of 1.6. Concentration of Na+: for the semimaximal stimulation of H+ outcome amounted to 19 mM. The obtained results indicate the presence in lamprey erythrocytes of only one binding site for H+ from the cytoplasm side and the presence of positive cooperativity in Na+ binding from the extracellular side of the Na+/H+ exchanger. Its efflux from cells in the Na+ -free medium did not change at a 10-fold increase of H+ concentration in the incubation medium. The presented data indicate differences of kinetic properties of the lamprey erythrocyte Na+/H+ exchanger and of this carrier isoforms in mammalian cells. In intact erythrocytes the dependence of the amiloride-sensitive Na+ inflow on its concentration in the medium is described by Hill equation with n 1.5. The Na+ concentration producing the 50% transport activation amounted to 39 mM and was essentially higher as compared with that in acidified erythrocytes. These data confirm the concept of the presence of two amiloride-sensitive pathways of Na+ transport in lamprey erythrocytes.[Abstract] [Full Text] [Related] [New Search]