These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation.
    Author: Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S, Amano M, Kaibuchi K.
    Journal: Dev Cell; 2008 Feb; 14(2):205-15. PubMed ID: 18267089.
    Abstract:
    A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR complex remains elusive. We found here that Rho-kinase/ROCK/ROK, the effector of RhoA, phosphorylated PAR-3 at Thr833 and thereby disrupted its interaction with aPKC and PAR-6, but not with Tiam2. Phosphorylated PAR-3 was observed in the leading edge, and in central and rear portions of migrating cells having front-rear polarity. Knockdown of PAR-3 by small interfering RNA (siRNA) impaired cell migration, front-rear polarization, and PAR-3-mediated Rac1 activation, which were recovered with siRNA-resistant PAR-3, but not with the phospho-mimic PAR-3 mutant. We propose that RhoA/Rho-kinase inhibits PAR complex formation through PAR-3 phosphorylation, resulting in Rac1 inactivation.
    [Abstract] [Full Text] [Related] [New Search]