These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). Author: Rogers HH, Runion GB, Prior SA, Price AJ, Torbert HA, Gjerstad DH. Journal: J Environ Qual; 2008; 37(2):395-400. PubMed ID: 18268302. Abstract: The rise in atmospheric CO(2) concentration coupled with its direct, often positive, effect on the growth of plants raises the question of the response of invasive plants to elevated atmospheric CO(2) levels. Response of two invasive weeds [purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.)] to CO(2) enrichment was tested. Plants were exposed to ambient (375 micromol mol(-1)) or elevated CO(2) (ambient + 200 micromol mol(-1)) for 71 d in open top chambers. Photosynthetic rate did not differ between CO(2) treatments for either species. Conductance was lower in purple nutsedge and tended to be lower in yellow nutsedge. Purple nutsedge had higher instantaneous water use efficiency; a similar trend was noted for yellow nutsedge. Purple nutsedge had greater leaf area, root length and numbers of tubers and tended to have more tillers under high CO(2). In yellow nutsedge, only tuber number increased under CO(2) enrichment. Leaf dry weight was greater for both species when grown under elevated CO(2). Only purple nutsedge made seed heads; CO(2) level did not change seed head dry weight. Root dry weight increased under the high CO(2) treatment for purple nutsedge only, but tuber dry weight increased for both. Total dry weight of both species increased at elevated CO(2). Purple nutsedge (under elevated CO(2)) tended to increase allocation belowground, which led to greater root-to-shoot ratio (R:S); R:S of yellow nutsedge was unaffected by CO(2) enrichment. Findings suggest both species, purple more than yellow nutsedge, may be more invasive in a future high-CO(2) world.[Abstract] [Full Text] [Related] [New Search]