These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields.
    Author: Jaynes DB, Kaspar TC, Moorman TB, Parkin TB.
    Journal: J Environ Qual; 2008; 37(2):429-36. PubMed ID: 18268306.
    Abstract:
    Nitrate in water removed from fields by subsurface drain ('tile') systems is often at concentrations exceeding the 10 mg N L(-1) maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO(3) concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO(3) losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.2 m below the soil surface to losses in tile drainage from two alternative drainage designs. The alternative treatments were a deep tile (DT), where the tile drain was installed 0.6 m deeper than the conventional tile depth, but with the outlet maintained at 1.2 m, and a denitrification wall (DW), where trenches excavated parallel to the tile and filled with woodchips serve as additional carbon sources to increase denitrification. Four replicate 30.5- by 42.7-m field plots were installed for each treatment in 1999 and a corn-soybean rotation initiated in 2000. Over 5 yr (2001-2005) the tile flow from the DW treatment had annual average NO(3) concentrations significantly lower than the CN treatment (8.8 vs. 22.1 mg N L(-1)). This represented an annual reduction in NO(3) mass loss of 29 kg N ha(-1) or a 55% reduction in nitrate mass lost in tile drainage for the DW treatment. The DT treatment did not consistently lower NO(3) concentrations, nor reduce the annual NO(3) mass loss in drainage. The DT treatment did exhibit lower NO(3) concentrations in tile drainage than the CN treatment during late summer when tile flow rates were minimal. There was no difference in crop yields for any of the treatments. Thus, denitrification walls are able to substantially reduce NO(3) concentrations in tile drainage for at least 5 yr.
    [Abstract] [Full Text] [Related] [New Search]