These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyols as scaffolds in the development of ion-selective polymer-supported reagents: the effect of auxiliary groups on the mechanism of metal ion complexation. Author: Alexandratos SD, Zhu X. Journal: Inorg Chem; 2008 Apr 07; 47(7):2831-6. PubMed ID: 18269222. Abstract: In developing ion-selective polymer-supported reagents, the inherent affinity of a given ligand for a targeted metal ion is found to be affected by auxiliary groups on a scaffold. A series of polyols (ethylene glycol, glycerol, tris(hydroxymethyl)ethane, pentaerythritol, and pentaerythritol triethoxylate) are immobilized onto cross-linked poly(vinylbenzyl chloride), then monophosphorylated. The pentaerythritol, glycerol, and pentaerythritol triethoxylate polymers have the highest affinities for both trivalent and divalent ions. The distribution coefficients of divalent ions (Pb(II), Cd(II), Cu(II), Ni(II), and Zn(II)) correlate with the Misono softness parameter, reflecting a single-site interaction between the metal ion and the phosphoryl oxygen. The distribution coefficients for trivalent ions are in the order Fe(III) < Al(III) < Y(III) less, approximately < La(III) approximately Eu(III) approximately Lu(III). For example, the phosphorylated pentaerythritol polymer has distribution coefficients (also reported as percent complexed) for Fe of 68.4 (75.3%); for Al of 182 (88.5%); and for the rare earth ions Y, Lu, Eu, and La of 374 (94.4%), 1390 (98.4%), 1690 (98.4%), and 708 (96.9%), respectively, from solutions at pH 2.0. The opposite trend (i.e., Fe(III) > Al(III) > (rare earths)) correlates with their hardness, acidity, electron affinity, electronegativity, and formation constants with soluble complexants, including tributyl phosphate. A binding mechanism is proposed wherein the polymer initially has the auxiliary -OH groups hydrogen-bonded to the phosphate ligand; then, binding to the polarizable phosphoryl oxygen with the divalent ions dominates, while the trivalent ions are drawn closer to the phosphoryl oxygen because of their greater charge and, once closer, bind in a multisite interaction with both the phosphate and -OH groups.[Abstract] [Full Text] [Related] [New Search]