These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Classification of fMRI time series in a low-dimensional subspace with a spatial prior. Author: Meyer FG, Shen X. Journal: IEEE Trans Med Imaging; 2008 Jan; 27(1):87-98. PubMed ID: 18270065. Abstract: We propose a new method for detecting activation in functional magnetic resonance imaging (fMRI) data. We project the fMRI time series on a low-dimensional subspace spanned by wavelet packets in order to create projections that are as non-Gaussian as possible. Our approach achieves two goals: it reduces the dimensionality of the problem by explicitly constructing a sparse approximation to the dataset and it also creates meaningful clusters allowing the separation of the activated regions from the clutter formed by the background time series. We use a mixture of Gaussian densities to model the distribution of the wavelet packet coefficients. We expect activated areas that are connected, and impose a spatial prior in the form of a Markov random field. Our approach was validated with in vivo data and realistic synthetic data, where it outperformed a linear model equipped with the knowledge of the true hemodynamic response.[Abstract] [Full Text] [Related] [New Search]