These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation. Author: Tarasenko O, Soderberg L, Hester K, Park Kim M, McManus D, Alusta P. Journal: Arch Microbiol; 2008 Jun; 189(6):579-87. PubMed ID: 18270686. Abstract: Infections caused by Bacillus spores can be attenuated if the intracellular killing of the organism by macrophages can be enhanced. Glycoconjugate-bearing polymers, which selectively bind to Bacillus spores, were tested for modulation of intracellular killing when added prior to, during, and following macrophage exposure to B. cereus spores. In the absence of glycoconjugates, murine macrophages were ineffective at killing Bacillus spores. In presence of glycoconjugates, however, macrophages efficiently killed spores, whether the glycoconjugates were added to the cells prior to, during, and following spore addition. Glycoconjugates were shown to exert a protective influence on macrophages and increase their activation, as evidenced by viability and lactate dehydrogenase release assays. Increased levels of nitric oxide production by macrophages pretreated with glycoconjugates suggest that, under these conditions, glycoconjugates provide an activation signal to macrophages. These results indicate that glycoconjugates promote killing of Bacillus spores, while increasing macrophage activation level and viability. The selection of glycoconjugate ligands bearing immunomodulating properties could be exploited for vaccine and/or immunomodulator development and/or for the improvement of existing vaccines against B. cereus and B. anthracis.[Abstract] [Full Text] [Related] [New Search]