These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transport of organic cations by a renal epithelial cell line (OK).
    Author: Yuan G, Ott RJ, Salgado C, Giacomini KM.
    Journal: J Biol Chem; 1991 May 15; 266(14):8978-86. PubMed ID: 1827442.
    Abstract:
    The goal of this study was to determine the mechanisms involved in the transport of the organic cation, tetraethylammonium (TEA), across the apical membrane of OK cells. [14C]TEA accumulated in OK cell monolayers reaching equilibrium in 2 h. The uptake of [14C]TEA at equilibrium was dependent upon temperature and was inhibited by sodium azide and by various organic cations, including N1-methylnicotinamide (NMN), mepiperphenidol, and cimetidine but not by the organic anion, p-aminohippuric acid. The initial uptake of [14C]TEA was characterized by a saturable process. The mean +/- S.D. Km was 27.8 +/- 2.6 microM and the Vmax was 414 +/- 26.5 pmol/mg protein/min. Both an accelerated efflux and influx of [14C]TEA in the presence of a trans-gradient of unlabeled TEA and NMN was observed, whereas a deaccelerated influx and efflux was observed in the presence of a trans-gradient of mepiperphenidol. The mechanism of interaction between NMN and TEA was examined. NMN significantly increased the apparent Km (mean +/- S.D.) of TEA to 82.8 +/- 16.4 microM (p less than 0.001), whereas the Vmax (mean +/- S.D.) was only slightly affected (478 +/- 72 pmol/mg protein/min) suggesting a competitive inhibition. The stimulatory effect of trans-gradients of NMN on TEA transport was due to an increase in the Vmax of TEA suggesting that NMN trans-stimulates TEA transport by increasing the turnover rate of the exchanger. In the presence of an inwardly directed proton gradient, the efflux at 30 s of [14C]TEA from the OK cell monolayers was significantly accelerated (p less than 0.05). Studies with the pH-sensitive fluorescent probe, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, suggested that TEA could drive the countertransport of protons. In apical membrane vesicles prepared from OK cells, the uptake of [3H]NMN exhibited an apparent "overshoot phenomenon" in the presence of an initial outwardly directed proton gradient. Protons competitively inhibited TEA uptake suggesting that the proton/organic cation and the organic cation/organic cation self exchange mechanism are the same mechanism. This is the first report describing both TEA self-exchange and proton/TEA exchange in the apical membrane of a continuous cell line. OK cells are an excellent model for the study of organic cation transport across the apical membrane.
    [Abstract] [Full Text] [Related] [New Search]