These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists attenuate the profibrotic response induced by TGF-beta1 in renal interstitial fibroblasts. Author: Wang W, Liu F, Chen N. Journal: Mediators Inflamm; 2007; 2007():62641. PubMed ID: 18274641. Abstract: BACKGROUND: Studies have shown that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists could ameliorate renal fibrotic lesions in both diabetic nephropathy and nondiabetic chronic kidney diseases. In order to elucidate the antifibrotic mechanism of PPAR-gamma agonists, we investigated the effects of PPAR-gamma activation on TGF-beta1-induced renal interstitial fibroblasts. METHODS: In rat renal interstitial fibroblasts (NRK/49F), the mRNA expression of TGF-beta1-induced alpha-smooth muscle actin (alpha-SMA), connective tissue growth factor (CTGF), fibronectin (FN) and collagen type III (Col III) were observed by reverse transcriptase-polymerase chain reaction (RT-PCR). The protein expressions of FN and Smads were observed by Western blot. RESULTS: In NRK/49F, TGF-beta1 enhanced CTGF, FN and Col III mRNA expression in a dose- and time-dependent manner. alpha-SMA, CTGF, FN and Col III mRNA and FN protein expression in 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2)-troglitazone- and ciglitazone-pretreated groups, respectively, were significantly decreased compared with the TGF-beta1-stimulated group. TGF-beta1 (5 ng/mL) enhanced p-Smad2/3 protein expression in a time-dependent manner. Compared with the TGF-beta1-stimulated group, p-Smad2/3 protein induced by TGF-beta1 in PPAR-gamma agonists-pretreated groups significantly decreased with no statistical difference amongst the three pretreated groups. CONCLUSION: PPAR-gamma agonists could inhibit TGF-beta1-induced renal fibroblast activation, CTGF expression and ECM synthesis through abrogating the TGF-beta1/Smads signaling pathway.[Abstract] [Full Text] [Related] [New Search]