These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis. Author: Ma Y, Lu G. Journal: Dalton Trans; 2008 Feb 28; (8):1081-6. PubMed ID: 18274689. Abstract: The supramolecular interactions of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP have been investigated using (1)H and (31)P NMR spectra. Furthermore, the hydrolysis of ATP catalyzed by Mg(ii) and TAME has been studied at 60 degrees C and pH 7 using (31)P NMR spectra. In the Mg(ii)-ATP-TAME ternary system, the binding interaction of Mg(2+) with ATP involves not only N1 and N7 in the adenine ring but also beta- and gamma-phosphate of ATP. The binding forces are mainly electrostatic interaction and cation (Mg(2+))-pi interaction. The guanidinium group and the aromatic ring of TAME interacts with ATP by beta and gamma phosphate and the adenine ring of ATP. The binding forces are mainly electrostatic interactions and pi-pi stacking. A significant difference between the binary and the ternary system indicates that TAME is essential to the stablization of the intermediate. Kinetic studies show that the hydrolysis rate constant of ATP is 2.16 x 10(-2) h(-1) at pH 7 in the Mg(ii)-TAME-ATP ternary system. The Mg(ii) ion and TAME can accelerate the ATP hydrolysis process. A possible mechanism has been proposed that the hydrolysis occurs through an addition-elimination, in which the phosphoramidate intermediate was observed at 3.21 ppm in the (31)P NMR of the ternary system. These results provide further information concerning the effect of the key amino acid residue and metal ions as cofactors of ATPase on ATP synthesis/hydrolysis at the molecular level.[Abstract] [Full Text] [Related] [New Search]