These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Responses to binary taste mixtures in the nucleus of the solitary tract: neural coding with firing rate.
    Author: Chen JY, Di Lorenzo PM.
    Journal: J Neurophysiol; 2008 May; 99(5):2144-57. PubMed ID: 18287552.
    Abstract:
    The contribution of gustation to the perception of food requires an understanding of how neurons represent mixtures of taste qualities. In the periphery, separate groups of fibers, labeled by the stimulus that evokes the best (largest) response, appear to respond to each component of a mixture. In the brain, identification of analogous groups of neurons is hampered by trial-to-trial variability in response magnitude. In addition, convergence of different fiber types onto central neurons may complicate the classification scheme. To investigate these issues, electrophysiological responses to four tastants: sucrose, NaCl, HCl, and quinine, and their binary mixtures were recorded from 56 cells in the nucleus of the solitary tract (NTS, the 1st synapse in the central gustatory pathway) of the anesthetized rat. For 36 of these cells, all 10 stimuli were repeated at least five times (range: 5-23; median = 10). Results showed that 39% of these cells changed their best stimulus across stimulus repetitions, suggesting that response magnitude (firing rate) on any given trial produces an ambiguous message. Averaged across replicate trials, mixture responses most often approximated the response to the more effective component of the mixture. Cells that responded best to a taste mixture rather than any single-component tastant were identified. These cells were more broadly tuned than were cells that responded best to single-component stimuli and showed evidence of convergence from more than one best stimulus fiber type. Functionally, mixture-best cells may amplify the neural signal produced by unique configurations of basic taste qualities.
    [Abstract] [Full Text] [Related] [New Search]