These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black.
    Author: Kunimatsu K, Sato T, Uchida H, Watanabe M.
    Journal: Langmuir; 2008 Apr 01; 24(7):3590-601. PubMed ID: 18288871.
    Abstract:
    ATR-FTIRAS measurements combined with linear potential sweep voltammetry were conducted to investigate oxidation of CO adsorbed on a highly dispersed Pt catalyst supported on carbon black, Pt/C, and carbon-unsupported Pt black catalyst, Pt-B. Bands nu(CO) of atop- and bridge-bonded COs were resolved into those of COs adsorbed at terrace and step edge sites by curve-fitting analysis. At the high coverage near the saturation, a band around 1950-1960 cm(-1) assigned to asymmetric bridge-bonded CO, CO(B)(asym), was observed to develop on both Pt/C and Pt-B, which was the predominant type on the latter. Preferential oxidation of atop-CO adsorbed at the step edge site was commonly observed on both Pt/C and Pt-B during the potential sweep from 0.05 to 1.2 V. However, it has been found that CO(B)(asym) is the most reactive species. The high reactivity of the CO(B)(asym) on Pt/C and Pt-B is demonstrated for the first time in the present report. Adsorption of CO on the Pt/C and Pt-B resulted in growth of a sharp nu(OH) band around 3642-3645 cm(-1) which is assigned to non-hydrogen-bonded water molecules coadsorbed with CO. The nu(OH) band frequency exhibits a linear increase with potential with a Stark tuning rate of ca. 20 cm(-1)/V. Analysis of the potential dependence of this band in the CO oxidation potential region led us to conclude that this is the oxygen-containing species to oxidize adsorbed CO. Stark tuning rates of nu(CO) bands for the COs at the terrace and step edge sites on both Pt/C and Pt-B are almost independent of the adsorption sites for both atop- and bridge-bonded COs. However, CO(B)(asym) exhibits tuning rates of 41 cm-1/V and 37 cm-1/ V on Pt/C and Pt-B, respectively, which is in between the rates of atop and symmetric bridge-bonded COs.
    [Abstract] [Full Text] [Related] [New Search]