These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions.
    Author: Johannsen S, Paulus S, Düpre N, Müller J, Sigel RK.
    Journal: J Inorg Biochem; 2008; 102(5-6):1141-51. PubMed ID: 18289686.
    Abstract:
    In vitro transcription by T7 RNA polymerase can be used to construct scaffolds for the one-dimensional arrangement of mercury(II) ions. In these constructs, the metal ions are located inside of RNA double helices. By replacing the amide protons of two oppositely located uracil residues of complementary strands, mercury(II) becomes coordinated in a linear fashion to form metal-ion mediated base pairs, analogous to the well-known thymine-Hg-thymine base pair in DNA. This is shown here by a combination of various experimental techniques, including NMR spectroscopy, dynamic light scattering, as well as UV and CD spectroscopy. A total of five different double helices, including both palindromic and non-palindromic RNA sequences and between two and twenty consecutive uracil residues, have been synthesized and shown to be able to incorporate mercury(II). The synthesis of r(GGAGU 20CUCC) demonstrates that T7 polymerase is capable of handling long continuous stretches of identical nucleotides, albeit at the cost of an increasing number of abortion products and longer oligonucleotide strands that need to be separated by polyacrylamide gel electrophoresis. This work introduces RNA into the group of nucleic acids that can form metal ion mediated base pairs. The use of such metal-modified nucleic acids has been envisaged in various fields of research, including the generation of molecular wires.
    [Abstract] [Full Text] [Related] [New Search]