These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of p38 MAPK induced peroxynitrite generation in LPS plus IFN-gamma-stimulated rat primary astrocytes via activation of iNOS and NADPH oxidase. Author: Yoo BK, Choi JW, Shin CY, Jeon SJ, Park SJ, Cheong JH, Han SY, Ryu JR, Song MR, Ko KH. Journal: Neurochem Int; 2008 May; 52(6):1188-97. PubMed ID: 18289732. Abstract: We have shown that immunostimulated astrocytes produce excess nitric oxide (NO) and eventually peroxynitrite (ONOO(-)) that was closely associated with the glucose deprivation-potentiated death of astrocytes. The present study shows that activated p38 MAPK regulates ONOO(-) generation from lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)-stimulated astrocytes. LPS+IFN-gamma-induced p38 MAPK activation and ONOO(-) generation were attenuated by SB203580 or SKF-86002, specific inhibitors of p38 MAPK. ONOO(-) generation was blocked by NADPH oxidase inhibitor, diphenyleneiodonium chloride, and nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester, suggesting both enzymes are involved in ONOO(-) generation. Inhibition of p38 MAPK suppressed LPS+IFN-gamma-induced NO production through down-regulating inducible form of NOS expression. It also suppressed LPS+IFN-gamma-induced NADPH oxidase activation and eventually, the inducible form of superoxide production. Transfection with dominant negative vector of p38 alpha reduced LPS+IFN-gamma-induced ONOO(-) generation through blocking both iNOS-derived NO production and NADPH oxidase-derived O2(-) production. Our results suggest that activated p38 MAPK may serve as a potential signaling molecule in ONOO(-) generation through dual regulatory mechanisms, involving iNOS induction and NADPH oxidase activation.[Abstract] [Full Text] [Related] [New Search]