These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Author: Yang HP, Barbash DA. Journal: Genome Biol; 2008; 9(2):R39. PubMed ID: 18291035. Abstract: BACKGROUND: Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA-mediated transposable elements (TEs) derived from autonomous TEs. Unlike in many plants or animals, MITEs and other types of DNA-mediated TEs were previously thought to be either rare or absent in Drosophila. Most other TE families in Drosophila exist at low or intermediate copy number (around < 100 per genome). RESULTS: We present evidence here that the dispersed repeat Drosophila interspersed element 1 (DINE-1; also named INE-1 and DNAREP1) is a highly abundant DNA-mediated TE containing inverted repeats found in all 12 sequenced Drosophila genomes. All DINE-1s share a similar sequence structure, but are more homogeneous within species than they are among species. The inferred phylogenetic relationship of the DINE-1 consensus sequence from each species is generally consistent with the known species phylogeny, suggesting vertical transmission as the major mechanism for DINE-1 propagation. Exceptions observed in D. willistoni and D. ananassae could be due to either horizontal transfer or reactivation of ancestral copies. Our analysis of pairwise percentage identity of DINE-1 copies within species suggests that the transpositional activity of DINE-1 is extremely dynamic, with some lineages showing evidence for recent transpositional bursts and other lineages appearing to have silenced their DINE-1s for long periods of time. We also find that all species have many DINE-1 insertions in introns and adjacent to protein-coding genes. Finally, we discuss our results in light of a recent proposal that DINE-1s belong to the Helitron family of TEs. CONCLUSION: We find that all 12 Drosophila species with whole-genome sequence contain the high copy element DINE-1. Although all DINE-1s share a similar structure, species-specific variation in the distribution of average pairwise divergence suggests that DINE-1 has gone through multiple independent cycles of activation and suppression. DINE-1 also has had a significant impact on gene structure evolution.[Abstract] [Full Text] [Related] [New Search]