These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data: analysis of benzoic acid in beverage samples.
    Author: Lozano VA, Ibañez GA, Olivieri AC.
    Journal: Anal Chim Acta; 2008 Mar 10; 610(2):186-95. PubMed ID: 18291128.
    Abstract:
    Lanthanide-sensitized luminescence excitation-time decay matrices were employed for achieving the second-order advantage using as chemometric algorithms parallel factor analysis (PARAFAC) and multidimensional partial least-squares with residual bilinearization (N-PLS/RBL). The second-order data were measured for a calibration set of samples containing the analyte benzoic acid in the concentration range from 0.00 to 5.00 mg L(-1), for a validation set containing the analyte and the potential interferent saccharin (in the range 0.00-6.00 mg L(-1)), and for real samples of beverages containing benzoic acid as preservant, saccharin, and other potentially interfering compounds. All samples were treated with terbium(III), trioctylphosphine oxide as a synergistic ligand, and contained a suitable imidazol buffer, in order to ensure maximum intensity of the luminescence signals. The results indicate a slightly better predictive ability of the newly introduced N-PLS/RBL procedure over standard PARAFAC, both in what concerns the comparison with nominal analyte concentrations in the validation sample set and with results provided by the reference high-performance liquid chromatographic technique for the real sample set.
    [Abstract] [Full Text] [Related] [New Search]