These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, cannabinoid receptor affinity, and molecular modeling studies of substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides.
    Author: Silvestri R, Cascio MG, La Regina G, Piscitelli F, Lavecchia A, Brizzi A, Pasquini S, Botta M, Novellino E, Di Marzo V, Corelli F.
    Journal: J Med Chem; 2008 Mar 27; 51(6):1560-76. PubMed ID: 18293908.
    Abstract:
    The new 1-phenyl-5-(1 H-pyrrol-1-yl)pyrazole-3-carboxamides were compared with the reference compounds AM251 and SR144528 for cannabinoid hCB 1 and hCB 2 receptor affinity. Compounds bearing 2,4-dichlorophenyl or 2,4-difluorophenyl groups at position 1 and 2,5-dimethylpyrrole moiety at position 5 of the pyrazole nucleus were generally more selective for hCB 1. On the other hand, the N-cyclohexyl group at the 3-carboxamide was the determinant for the hCB 2 selectivity, in particular when a 3,4-dichlorophenyl group was also present at position 1. Compound 26 was the most selective ligand for the hCB 1 receptor ( K i (CB 2)/ K i (CB 1) = 140.7). Derivative 30, the most potent hCB 1 ligand ( K i = 5.6 nM), was equipotent to AM251 and behaved as an inverse agonist in the cAMP assay (EC 50 approximately 1 nM). The carbonyl oxygen of both 26 and 30 formed a H-bond with K3.28(192), while the substituents at the nitrogen fitted in a pocket formed by lipophilic residues. This H-bonding interaction was proposed to account for the high affinity for receptors' inactive state and the inverse agonist activity.
    [Abstract] [Full Text] [Related] [New Search]