These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Author: Shobha Jeykumari DR, Sriman Narayanan S. Journal: Biosens Bioelectron; 2008 Apr 15; 23(9):1404-11. PubMed ID: 18294834. Abstract: The performance of a new glucose biosensor based on the combination of biocatalytic activity of glucose oxidase (GOx) with the electrocatalytic properties of CNTs and neutral red (NR) for the determination of glucose is described. This sensor is comprised of a multiwalled carbon nanotubes (MWNTs) conduit functionalized with NR and Nafion (Nf) as a binder and glucose oxidase as a biocatalyst. Neutral red was covalently immobilized on carboxylic acid groups of the CNTs via carbodiimide reaction. The functionalized MWNTs were characterized by microscopic, spectroscopic and thermal methods. The MWNT-NR-GOx-Nf nanobiocomposite was prepared by mixing the GOx solution with NR functionalized CNTs followed by mixing homogeneously with Nafion. The performance of the MWNT-NR-GOx-Nf nanobiocomposite modified electrode was examined by electrochemical impedance spectroscopy and cyclic voltammetry. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon glucose with NR functionalized CNTs leads to the selective detection of glucose. The excellent electrocatalytic activity and the influence of nanobiocomposite film result in good characteristics such as low potential detection of glucose with a large determination range from 1 x 10(-8) to 1 x 10(-3)M with a detection limit of 3 x 10(-9)M glucose, a short response time (with 4s), good stability and anti-interferent ability. The improved electrocatalytic activity and stability made the MWNT-NR-GOx-Nf nanobiocomposite biosensor system a potential platform to immobilize different enzymes for other bioelectrochemical applications.[Abstract] [Full Text] [Related] [New Search]