These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subject-specific non-linear biomechanical model of needle insertion into brain.
    Author: Wittek A, Dutta-Roy T, Taylor Z, Horton A, Washio T, Chinzei K, Miller K.
    Journal: Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):135-46. PubMed ID: 18297493.
    Abstract:
    The previous models for predicting the forces acting on a needle during insertion into very soft organs (such as, e.g. brain) relied on oversimplifying assumptions of linear elasticity and specific experimentally derived functions for determining needle-tissue interactions. In this contribution, we propose a more general approach in which the needle forces are determined directly from the equations of continuum mechanics using fully non-linear finite element procedures that account for large deformations (geometric non-linearity) and non-linear stress-strain relationship (material non-linearity) of soft tissues. We applied these procedures to model needle insertion into a swine brain using the constitutive properties determined from the experiments on tissue samples obtained from the same brain (i.e. the subject-specific constitutive properties were used). We focused on the insertion phase preceding puncture of the brain meninges and obtained a very accurate prediction of the needle force. This demonstrates the utility of non-linear finite element procedures in patient-specific modelling of needle insertion into soft organs such as, e.g. brain.
    [Abstract] [Full Text] [Related] [New Search]