These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of apo[a] and apoB in human atherosclerotic lesions. Author: Pepin JM, O'Neil JA, Hoff HF. Journal: J Lipid Res; 1991 Feb; 32(2):317-27. PubMed ID: 1829751. Abstract: Lipoprotein[a] or Lp[a] is a cholesterol-rich plasma lipoprotein that is associated with increased risk for cardiovascular disease. To better understand this association we determined the amount of apo[a] and apoB as possible estimates for Lp[a] and low density lipoprotein (LDL) accumulation in atherosclerotic lesions and in plasma, from patients undergoing vascular surgery, using specific radioimmunoassays for apolipoprotein[a] and apolipoprotein B. Apo[a] and apoB were operationally divided into a loosely bound fraction obtained by extracting minced samples of plaque with phosphate-buffered saline (PBS), and a tightly bound fraction obtained by extracting the residual tissue with 6 M guanidine-HCl (GuHCl). We found that 83% of all apo[a] but only 32% of all apoB in lesions was in the tightly bound fraction. When normalized for corresponding plasma levels, apo[a] accumulation in plaques was more than twice that of apoB. All fractions of tissue apo[a], loosely bound, tightly bound, and total, correlated significantly with plasma apo[a]. However, no significant correlations were found between any of the tissue fractions and plasma apoB. If all apo[a] and apoB had been associated with intact Lp[a] or LDL particles, the calculated mass of tightly bound Lp[a] would actually have exceeded that of tightly bound LDL in five cases with plasma Lp[a] levels above 5 mg apo[a] protein/dl. When PBS and GuHCl extracts of lesions were subjected to one-dimensional electrophoresis, the major band stained for lipid and immunoblotted positively for apo[a] and apoB, suggesting the presence of some intact Lp[a] in these extracts. These results suggest that Lp[a] accumulates preferentially to LDL in plaques, and that plaque apo[a] is directly associated with plasma apo[a] levels and is in a form that is less easily removable than most of the apoB. This preferential accumulation of apo[a] as a tightly bound fraction in lesions, could be responsible for the independent association of Lp[a] with cardiovascular disease in humans.[Abstract] [Full Text] [Related] [New Search]