These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and validation of phospho-SRC, a novel and potential pharmacodynamic biomarker for dasatinib (SPRYCEL), a multi-targeted kinase inhibitor.
    Author: Luo FR, Barrett YC, Yang Z, Camuso A, McGlinchey K, Wen ML, Smykla R, Fager K, Wild R, Palme H, Galbraith S, Blackwood-Chirchir A, Lee FY.
    Journal: Cancer Chemother Pharmacol; 2008 Nov; 62(6):1065-74. PubMed ID: 18301894.
    Abstract:
    PURPOSE: Dasatinib (BMS-354825) is a potent, oral multi-targeted kinase inhibitor. It is an effective therapy for patients with imatinib-resistant or -intolerant Ph+ leukemias,. It has demonstrated promising preclinical anti-tumor activity, and is under clinical evaluation in solid tumors. To support the clinical development of dasatinib, we identified a pharmacodynamic biomarker to assess in vivo SRC kinase inhibition, with subsequent evaluation in cancer patients. METHODS: The biomarker, phosphorylated SRC (phospho-SRC), was first identified in human prostate PC-3 tumor cells and peripheral blood mononuclear cells (PBMCs) in vitro. It was further assessed in nude mice bearing PC-3 xenografts. Phospho-SRC[pY418] in tumors and PBMC were measured by western blot analysis, and were quantified by ELISA assays. Dasatinib plasma concentrations were determined using LC/MS/MS. RESULTS: In PC-3 cells, dasatinib showed dose-dependent anti-proliferative effect, which correlated with the inhibition of phospho-SRC[pY418] and of SRC kinase activity. With a single oral dose of 50 or 15 mg/kg, tumoral phospho-SRC[pY418] was maximally inhibited at 3 h, partially reversed between 7 and 17 h, and completely recovered after 24 h post dose. At 5 mg/kg, tumoral phospho-SRC[pY418] inhibition was less pronounced and recovered more rapidly to baseline level within 24h. Dasatinib (1 mg/kg) resulted in little inhibition. In PBMCs, a similar time course and extent of phospho-SRC[pY418] inhibition was observed. Inhibition of phospho-SRC[pY418] in vivo appeared to correlate with the preclinical in vivo efficacy and PK profiles of dasatinib in mice. CONCLUSIONS: Phospho-SRC[pY418] may potentially be used as a biomarker to enable assessment of target inhibition in clinical studies exploring dasatinib antitumor activity.
    [Abstract] [Full Text] [Related] [New Search]