These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro activation of the medial septum-diagonal band complex generates atropine-sensitive and atropine-resistant hippocampal theta rhythm: an investigation using a complete septohippocampal preparation. Author: Goutagny R, Manseau F, Jackson J, Danik M, Williams S. Journal: Hippocampus; 2008; 18(6):531-5. PubMed ID: 18306282. Abstract: The medial septum and diagonal band complex (MS-DB) is believed to play a key role in generating theta oscillations in the hippocampus, a phenomenon critical for learning and memory. Although the importance of the MS-DB in hippocampal theta rhythm generation is generally accepted, it remains to be determined whether the MS-DB alone can generate hippocampal oscillations or is only a transducer of rhythmic activity from other brain areas. Secondly, it is known that hippocampal theta rhythm can be separated into an atropine-sensitive and insensitive component. However, it remains to be established if the MS-DB can generate both types of rhythm. To answer these questions, we used a new in vitro rat septohippocampal preparation placed in a hermetically separated two side recording chamber. We showed that carbachol activation of the MS-DB generated large theta oscillations in the CA1 and CA3 regions of the hippocampus. These oscillations were blocked by applying either the GABA(A) receptor antagonist bicuculline or the AMPA/kainate antagonist DNQX to the hippocampus. Interestingly, the application of the muscarinic receptor antagonist atropine produced only a partial decrease in the amplitude, without modification of the frequency, of theta. These results show for the first time, that upon optimal excitation, the MS-DB alone is able to generate hippocampal oscillations in the theta frequency band. Moreover, these MS-DB generated theta oscillations are mediated by muscarinic and nonmuscarinic receptors and have a pharmacological profile similar to theta rhythm observed in awake animals.[Abstract] [Full Text] [Related] [New Search]