These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of bottom-fermenting saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis.
    Author: Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T, Yoshimoto H.
    Journal: Appl Environ Microbiol; 2008 May; 74(9):2787-96. PubMed ID: 18310411.
    Abstract:
    Sulfite plays an important role in beer flavor stability. Although breeding of bottom-fermenting Saccharomyces strains that produce high levels of SO(2) is desirable, it is complicated by the fact that undesirable H(2)S is produced as an intermediate in the same pathway. Here, we report the development of a high-level SO(2)-producing bottom-fermenting yeast strain by integrated metabolome and transcriptome analysis. This analysis revealed that O-acetylhomoserine (OAH) is the rate-limiting factor for the production of SO(2) and H(2)S. Appropriate genetic modifications were then introduced into a prototype strain to increase metabolic fluxes from aspartate to OAH and from sulfate to SO(2), resulting in high SO(2) and low H(2)S production. Spontaneous mutants of an industrial strain that were resistant to both methionine and threonine analogs were then analyzed for similar metabolic fluxes. One promising mutant produced much higher levels of SO(2) than the parent but produced parental levels of H(2)S.
    [Abstract] [Full Text] [Related] [New Search]