These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of two dietary concentrate levels on tenderness, calpain and calpastatin activities, and carcass merit in Waguli and Brahman steers.
    Author: Ibrahim RM, Goll DE, Marchello JA, Duff GC, Thompson VF, Mares SW, Ahmad HA.
    Journal: J Anim Sci; 2008 Jun; 86(6):1426-33. PubMed ID: 18310491.
    Abstract:
    The objective of this study was to compare carcass characteristics of a newly introduced breed, the Waguli (Wagyu x Tuli), with the carcass characteristics of the Brahman breed. Brahman cattle are used extensively in the Southwest of the United States because of their tolerance to adverse environmental conditions. However, Brahman carcasses are discounted according to the height of their humps because of meat tenderness issues. The Waguli was developed in an attempt to obtain a breed that retained the heat tolerance of the Brahman but had meat quality attributes similar to the Wagyu. Twenty-four animals were used. Six steers from each breed were fed a 94% concentrate diet and 6 steers from each breed were fed an 86% concentrate diet. Eight steers, 2 from each group, were harvested after 128 d, after 142 d, and after 156 d on feed. Waguli steers had larger LM, greater backfat thickness, greater marbling scores, and greater quality grades than the Brahman steers (P < 0.05). The Japanese Wagyu breed is well known for its highly marbled and tender meat, and these traits are also present in the Waguli. The Waguli had significantly lower Warner-Bratzler shear force values than the Brahman steers after 7 and 10 d of postmortem aging (P < 0.05); this difference decreased after 14 d postmortem (P = 0.2), when tenderness of the slower aging Brahman had increased to acceptable levels. Toughness of the Brahman has been associated with high levels of calpastatin in Brahman muscle, and the Waguli LM had significantly less calpastatin activity (P = 0.02) at 0 h postmortem than the Brahman LM. At 0-h postmortem, the total LM calpain activity did not differ between the Brahman and Waguli (P = 0.57). Neither diet nor days on feed had any significant effect on the 0-h postmortem calpain or at 0-h postmortem calpastatin activity, nor an effect on Warner-Bratzler shear-force values. In conclusion, LM muscle from the Waguli steers had a high degree of marbling, lower shear force values, and low calpastatin activity, all of which are related to more tender meat.
    [Abstract] [Full Text] [Related] [New Search]