These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functionally important conserved length of C-terminal regions of yeast and bovine ADP/ATP carriers, identified by deletion mutants studies, and water accessibility of the amino acids at the C-terminal region of the yeast carrier. Author: Iwahashi A, Ishii A, Yamazaki N, Hashimoto M, Ohkura K, Kataoka M, Majima E, Terada H, Shinohara Y. Journal: Mitochondrion; 2008 Mar; 8(2):196-204. PubMed ID: 18313366. Abstract: Comparison of the amino acid sequence of yeast type 2 ADP/ATP carrier (yAAC2) with that of bovine type 1 AAC (bAAC1) revealed that the N- and C-terminus of yAAC2 are 15- and 6-amino acids longer, respectively, than those of bAAC1. In the present study, we focused on the difference in the C-terminal region between yAAC2 and bAAC1. Deletion of first six residues of C-terminus of yAAC did not markedly affect the function of yAAC2; however, further deletion of 1 amino acid (7th amino acid from the C-terminus) destroyed its function. On the contrary, deletion of the first amino acid residue of the C-terminus of bAAC1 caused failure of its functional expression in yeast mitochondria. Based on these results, we concluded that the 6-amino acid residue extension of the C-terminus of yAAC2 was not necessary for the function of this carrier and that the remainder of the C-terminal region of yAAC2, having a length conserved with that of bAAC1, is important for the transport function of AACs. We next prepared various single-Cys mutants in which each of 32 residues in the C-terminus of yAAC2 was replaced by a Cys residue. Since all mutants were successfully expressed in yeast mitochondria, we examined the reactivity of these cysteine residues with the membrane-impermeable sulfhydryl reagent eosin 5-maleimide (EMA). As a result, all cysteine residues that replaced the 9 continuous amino acids in Met310-Lys318 showed high reactivity with EMA regardless of the presence of carboxyatractyloside or bongkrekic acid; and so this region was concluded to be exposed to the water-accessible environment. Furthermore, based on the reactivities of cysteine residues that replaced amino acids in the sixth transmembrane segment, the probable structural features of the C-terminal region of this carrier in the presence of bongkrekic acid were discussed.[Abstract] [Full Text] [Related] [New Search]