These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver.
    Author: Jeong WI, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, Horiguchi N, Harvey-White J, Marsicano G, Lutz B, Gao B, Kunos G.
    Journal: Cell Metab; 2008 Mar; 7(3):227-35. PubMed ID: 18316028.
    Abstract:
    Alcohol-induced fatty liver, a major cause of morbidity, has been attributed to enhanced hepatic lipogenesis and decreased fat clearance of unknown mechanism. Here we report that the steatosis induced in mice by a low-fat, liquid ethanol diet is attenuated by concurrent blockade of cannabinoid CB1 receptors. Global or hepatocyte-specific CB1 knockout mice are resistant to ethanol-induced steatosis and increases in lipogenic gene expression and have increased carnitine palmitoyltransferase 1 activity, which, unlike in controls, is not reduced by ethanol treatment. Ethanol feeding increases the hepatic expression of CB1 receptors and upregulates the endocannabinoid 2-arachidonoylglycerol (2-AG) and its biosynthetic enzyme diacylglycerol lipase beta selectively in hepatic stellate cells. In control but not CB1 receptor-deficient hepatocytes, coculture with stellate cells from ethanol-fed mice results in upregulation of CB1 receptors and lipogenic gene expression. We conclude that paracrine activation of hepatic CB1 receptors by stellate cell-derived 2-AG mediates ethanol-induced steatosis through increasing lipogenesis and decreasing fatty acid oxidation.
    [Abstract] [Full Text] [Related] [New Search]