These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multidrug resistance-associated protein-overexpressing teniposide-resistant human lymphomas undergo apoptosis by a tubulin-binding agent.
    Author: Aneja R, Liu M, Yates C, Gao J, Dong X, Zhou B, Vangapandu SN, Zhou J, Joshi HC.
    Journal: Cancer Res; 2008 Mar 01; 68(5):1495-503. PubMed ID: 18316614.
    Abstract:
    Several DNA- and microtubule-binding agents are used to manage hematologic malignancies in the clinic. However, drug resistance has been a challenge, perhaps due to a few surviving cancer stem cells. Toxicity is another major impediment to successful chemotherapy, leading to an impoverished quality of life. Here, we show that a semisynthetic nontoxic tubulin-binding agent, 9-bromonoscapine (EM011), effectively inhibits growth and regresses multidrug resistance-associated protein (MRP)-overexpressing teniposide-resistant T-cell lymphoma xenografts and prolongs longevity. As expected, teniposide treatment failed to regress teniposide-resistant xenografts, rather, treated mice suffered tremendous body weight loss. Mechanistically, EM011 displays significant antiproliferative activity, perturbs cell cycle progression by arresting mitosis, and induces apoptosis in teniposide-resistant lymphoblastoid T cells both in vitro and in vivo. EM011-induced apoptosis has a mitochondrially-mediated component, which was attenuated by pretreatment with cyclosporin A. We also observed alterations of apoptosis-regulatory molecules such as inactivation of Bcl2, translocation of BAX to the mitochondrial membrane, cytochrome c release, and activation of downstream apoptotic signaling. EM011 caused DNA degradation as evident by terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling staining of the increased concentration of 3'-DNA ends. Furthermore, the apoptotic induction was caspase dependent as shown by cleavage of the caspase substrate, poly(ADP)ribose polymerase. In addition, EM011 treatment caused a suppression of natural survival pathways such as the phosphatidylinositol-3'-kinase/Akt signaling. These preclinical findings suggest that EM011 is an excellent candidate for clinical evaluation.
    [Abstract] [Full Text] [Related] [New Search]