These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Author: Rex M, Löwen H.
    Journal: Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352.
    Abstract:
    The influence of hydrodynamic interactions on lane formation of oppositely charged driven colloidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-Prager level of the mobility tensor. Two cases are considered, namely sedimentation and electrophoresis. In the latter case the Oseen contribution to the mobility tensor is screened due to the opposite motion of counterions. The simulation results are compared to that resulting from simple Brownian dynamics where hydrodynamic interactions are neglected. For sedimentation, we find that hydrodynamic interactions strongly disfavor laning. In the steady state of lanes, a macroscopic phase separation of lanes is observed. This is in marked contrast to the simple Brownian case where a finite size of lanes was obtained in the steady state. For strong Coulomb interactions between the colloidal particles a lateral square lattice of oppositely driven lanes is stable similar to the simple Brownian dynamics. In an electric field, on the other hand, the behavior is found in qualitative and quantitative accordance with the case of neglected hydrodynamics.
    [Abstract] [Full Text] [Related] [New Search]