These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and characterization of mesoporous silica modified with chiral auxiliaries for their potential application as chiral stationary phase. Author: Mayani VJ, Abdi SH, Kureshy RI, Khan NH, Agrawal S, Jasra RV. Journal: J Chromatogr A; 2008 May 16; 1191(1-2):223-30. PubMed ID: 18325527. Abstract: Novel chiral stationary phase (CSP) based on chiral aminoalcohol immobilized on ordered mesoporous silica SBA-15 1a and standard silica 1b and their copper complexes 1a' and 1b', respectively, was synthesized as potential material for chiral ligand exchange chromatography (CLEC). Microanalysis, inductively coupled plasma spectroscopy (ICP), thermo-gravimetric analysis (TGA), cross polarized magic angle spinning (CP-MAS) (13)C NMR, Powder X-ray diffraction (PXRD), FTIR, N(2) adsorption isotherm, scanning electron microscopy (SEM), transmitted electron microscope (TEM) and solid reflectance UV-vis spectroscopy were used to characterize these materials. All the chiral stationary phases thus synthesized were used for the separation of different racemic compounds such as mandelic acid, 2,2'-dihydroxy-1,1'-binaphthalene BINOL) and diethyl tartrate by simple medium-pressure column chromatography. Successful enantio-separation of racemic mandelic acid was achieved with all the stationary phases but 1a and 1b gave slightly better resolution than their copper complexes 1a' and 1b'. Remarkably these materials are stable under the given experimental conditions and can be used repeatedly for several cycles of enantioresolution. It was observed that the porosity and surface area of the stationary phase play an important role in the chiral separation.[Abstract] [Full Text] [Related] [New Search]