These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: a pilot plant experiment. Author: Chin S, Jurng J, Lee JH, Hur JH. Journal: Waste Manag; 2008 Dec; 28(12):2684-9. PubMed ID: 18325752. Abstract: Pilot-plant experiments were performed to evaluate the effect of oxygen enrichment on the co-incineration of MSW and organic sludge from a wastewater treatment facility. Combustion chamber temperatures, stack gas concentrations, i.e., CO(2) and CO, and the residual oxygen were measured. The maximum ratio of organic sludge waste to total waste input was 30 wt.%. Oxygen-enriched air, 22 vol.% (dry basis) oxygen, was used for stable combustion. As the co-incineration ratio of the sludge increased, the primary and secondary combustion chamber temperatures were decreased to 900 and 750 degrees C, respectively, approximately 100 degrees C below the proper incineration. However, if the supplied air was enriched with 22 vol.% (dry basis) oxygen content, the incinerator temperature was high enough to burn the waste mixture containing 30 wt.% moisture sludge, with an estimated heating value of 6.72 MJ/kg. There are two main benefits of using oxygen enrichment in the co-incineration. First, the sensible heat can be reduced as the quantity of nitrogen in the flue gas will be decreased. Second, the unburned carbon formation is reduced due to the oxygen-enriched burning of the waste, despite an increase in the sludge co-incineration ratio.[Abstract] [Full Text] [Related] [New Search]