These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells.
    Author: Redondo-Muñoz J, Ugarte-Berzal E, García-Marco JA, del Cerro MH, Van den Steen PE, Opdenakker G, Terol MJ, García-Pardo A.
    Journal: Blood; 2008 Jul 01; 112(1):169-78. PubMed ID: 18326820.
    Abstract:
    As B-cell chronic lymphocytic leukemia (B-CLL) progresses, malignant cells extravasate and infiltrate lymphoid tissues. Several molecules, including gelatinase B/MMP-9, contribute to these processes. Although mainly a secreted protease, some MMP-9 is present at the B-CLL cell surface and the function, mode of anchoring, and interactions of this MMP-9 are unknown. Here we show that anti-MMP-9 antibodies immunoprecipitated a 190-kDa CD44v isoform and alpha4beta1 integrin from B-CLL cells, but not from normal B cells. Function-blocking antibodies to alpha4beta1 or CD44, or transfection with specific siRNAs, decreased cell-associated proMMP-9 and increased the secreted form. B-CLL cells attached to and bound proMMP-9 and active MMP-9, and this was inhibited by blocking the expression or function of alpha4beta1 or CD44. The MMP-9 hemopexin domain was critical in these interactions. alpha4beta1 and 190-kDa CD44v (but not CD44H) formed a complex at the cell surface, since they both coimmunoprecipitated with anti-alpha4, anti-beta1, or anti-CD44 antibodies. Immunofluorescence analyses confirmed that alpha4beta1 and CD44v colocalized with MMP-9. Binding of proMMP-9 inhibited B-CLL cell migration, and this required MMP-9 proteolytic activity. Thus, we have identified alpha4beta1 and CD44v as a novel proMMP-9 cell surface docking complex and show that cell-associated MMP-9 may regulate B-CLL cell migration and arrest.
    [Abstract] [Full Text] [Related] [New Search]