These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bis(7)-tacrine prevents glutamate-induced excitotoxicity more potently than memantine by selectively inhibiting NMDA receptors.
    Author: Liu YW, Li CY, Luo JL, Li WM, Fu HJ, Lao YZ, Liu LJ, Pang YP, Chang DC, Li ZW, Peoples RW, Ai YX, Han YF.
    Journal: Biochem Biophys Res Commun; 2008 May 16; 369(4):1007-11. PubMed ID: 18328812.
    Abstract:
    We have recently reported that bis(7)-tacrine could prevent glutamate-induced neuronal apoptosis through NMDA receptors. In this study, we demonstrated that in cultured rat cortical neurons, bis(7)-tacrine (IC(50), 0.02 microM) prevented glutamate-induced excitotoxicity more substantially than memantine (IC(50), 0.7 microM). In addition, bis(7)-tacrine was more efficient than memantine in buffering the intracellular Ca(2+) triggered by glutamate. In cultured rat hippocampal neurons, bis(7)-tacrine inhibited 50 microM NMDA-activated current in a concentration-dependent manner with an IC(50) of 0.68+/-0.07 microM, which is five times more potent than that produced by memantine (IC(50), 3.41+/-0.36 microM; p<0.05). By contrast, bis(7)-tacrine, up to 5 microM, did not significantly affect the current activated by 50 microM AMPA or 50 microM kainate. These results suggest that bis(7)-tacrine is more potent than memantine against glutamate-induced neurotoxicity by selectively inhibiting NMDA-activated current.
    [Abstract] [Full Text] [Related] [New Search]