These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic studies on stereospecific recognition by the thromboxane A2/prostaglandin H2 receptor of the antagonist, S-145. Author: Kishino J, Hanasaki K, Nagasaki T, Arita H. Journal: Br J Pharmacol; 1991 Aug; 103(4):1883-8. PubMed ID: 1833018. Abstract: 1. The mechanism for the stereospecific recognition of the antagonist S-145 by the thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor was examined by ligand-binding techniques in rat vascular smooth muscle cells (VSMCs) and in human platelet membranes. 2. Scatchard analysis revealed the existence of a single class of binding sites with the same maximum number for both [3H]-(+)-S-145 and [3H]-(-)-S-145 in both cell types. The dissociation constants (Kd) for the binding of the (+)-isomer in rat VSMCs and human platelet membranes were, respectively, 0.40 +/- 0.03 and 0.20 +/- 0.02 nM, each value being lower than that for the (-)-isomer (3.57 +/- 0.74 and 2.87 +/- 0.08 nM, respectively). 3. The rank orders of potency (Ki) for a series of TXA2/PGH2 ligands at inhibiting [3H]-(+)-S-145 binding were highly correlated with those determined for [3H]-(-)-S-145 binding in both cell preparations. 4. Kinetic analysis of the binding of both radioligands revealed a much lower dissociation rate constant (k-1) and a slightly greater association rate constant (k1) for the (+)-isomer compared to those for the (-)-isomer. 5. These results suggest that it is at the stage of dissociation from the TXA2/PGH2 receptor that the stereochemistry of the optical isomers of S-145 confers their difference in affinity for these receptors in rat VSMCs and human platelet membranes.[Abstract] [Full Text] [Related] [New Search]