These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine p-glycoprotein knockout model. Author: Mealey KL, Greene S, Bagley R, Gay J, Tucker R, Gavin P, Schmidt K, Nelson F. Journal: Drug Metab Dispos; 2008 Jun; 36(6):1073-9. PubMed ID: 18332085. Abstract: P-glycoprotein is considered to be a major factor impeding effective drug therapy for many diseases of the central nervous system (CNS). Thus, efforts are being made to gain a better understanding of P-glycoprotein's role in drug distribution to brain parenchyma and cerebrospinal fluid (CSF). The goal of this study was to validate and introduce a novel P-glycoprotein-deficient (ABCB1-1Delta) canine model for studying P-glycoprotein-mediated effects of drug distribution to brain tissue and CSF. CSF concentrations of drug are often used to correlate efficacy of CNS drug therapy as a surrogate for determining drug concentration in brain tissue. A secondary goal of this study was to investigate the validity of using CSF concentrations of P-glycoprotein substrates to predict brain tissue concentrations. Loperamide, an opioid that is excluded from the brain by P-glycoprotein, was used to confirm a P-glycoprotein-null phenotype in the dog model. ABCB1-1Delta dogs experienced CNS depression following loperamide administration, whereas ABCB1 wild-type dogs experienced no CNS depression. In summary, we have validated a novel P-glycoprotein-deficient canine model and have used the model to investigate transport of the P-glycoprotein substrate (99m)Tc-sestamibi at the blood-brain barrier and blood-CSF barrier.[Abstract] [Full Text] [Related] [New Search]