These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Author: Sormunen AJ, Leppänen MT, Kukkonen JV. Journal: Environ Toxicol Chem; 2008 Apr; 27(4):854-63. PubMed ID: 18333684. Abstract: The desorption and bioavailability of 3,3',4,4'-tetrachlorobiphenyl (PCB 77) were studied in spiked natural sediments at six concentrations. The desorption kinetics were measured in a sediment-water suspension using Tenax resin extraction, and the bioavailability was measured by exposing Lumbriculus variegatus (Oligochaeta) to PCB 77-spiked sediment in a 14-d kinetic study. In addition, freely dissolved pore-water concentrations were measured using the polyoxymethylene solid-phase extraction method. The present study examined whether bioavailability can be defined more accurately by measuring the size of desorbing fractions and the pore-water concentrations than by using the standard equilibrium partitioning approach. The importance of ingested sediment in bioaccumulation also was investigated. Our data showed a clear, decreasing trend in the rapid-desorbing fractions and in the standard biota-sediment accumulation factors (BSAF) with increasing concentration in sediment. Desorbing fractions-refined BSAFs were more uniform across the concentration treatments, and the pore-water PCB 77 concentration predicted tissue concentrations close to observed values. In the risk assessment process, pore-water concentration or desorbing fractions would lead to more precise bioavailability estimates compared with those from the traditional equilibrium partitioning approach. The result also showed, however, that sediment-ingesting worms had access to an additional bioavailable chemical fraction that was especially evident when PCB 77 pore-water concentrations most likely approached the solubility limit. Thus, feeding may modify the bioavailable fraction that cannot be explained by simple equilibrium partitioning models.[Abstract] [Full Text] [Related] [New Search]