These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Synchronization and genetic redundancy in circadian clocks].
    Author: Dardente H.
    Journal: Med Sci (Paris); 2008 Mar; 24(3):270-6. PubMed ID: 18334175.
    Abstract:
    A network of feedback loops constitutes the basis for circadian timing in mammals. Complex transcriptional, post-transcriptional and post-translational events are also involved in the ticking of circadian clocks, allowing them to run autonomously with their characteristic, near-24h period. Central to the molecular mechanism is the CLOCK/BMAL1 heterodimer of transcription factors. Recent data using Clock knock-out mice however suggest that CLOCK may not be as mandatory as initially suggested from data gathered in the Clock mutant mouse model. Indeed, it appears that the Clock homolog Npas2 is able to functionally compensate for Clock genetic ablation. Furthermore, real-time imaging techniques using different clock genes knock-out lines established on a PER2 ::Luc knock-in background now demonstrate that persistent rhythmicity in the suprachiasmatic nuclei likely arises as a consequence of combined genetic redundancy and strong intercellular coupling, the latter characteristic being likely weakened in peripheral tissues such as liver or lung. The present review aims at summarizing current knowledge of the molecular basis of circadian clocks and possible differences between central and peripheral clocks in light of recent findings in Clock knock-out mice.
    [Abstract] [Full Text] [Related] [New Search]