These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Entropy-based optimization of wavelet spatial filters.
    Author: Farina D, Kamavuako EN, Wu J, Naddeo F.
    Journal: IEEE Trans Biomed Eng; 2008 Mar; 55(3):914-22. PubMed ID: 18334382.
    Abstract:
    A new class of spatial filters for surface electromyographic (EMG) signal detection is proposed. These filters are based on the 2-D spatial wavelet decomposition of the surface EMG recorded with a grid of electrodes and inverse transformation after zeroing a subset of the transformation coefficients. The filter transfer function depends on the selected mother wavelet in the two spatial directions. Wavelet parameterization is proposed with the aim of signal-based optimization of the transfer function of the spatial filter. The optimization criterion was the minimization of the entropy of the time samples of the output signal. The optimized spatial filter is linear and space invariant. In simulated and experimental recordings, the optimized wavelet filter showed increased selectivity with respect to previously proposed filters. For example, in simulation, the ratio between the peak-to-peak amplitude of action potentials generated by motor units 20 degrees apart in the transversal direction was 8.58% (with monopolar recording), 2.47% (double differential), 2.59% (normal double differential), and 0.47% (optimized wavelet filter). In experimental recordings, the duration of the detected action potentials decreased from (mean +/- SD) 6.9 +/- 0.3 ms (monopolar recording), to 4.5 +/- 0.2 ms (normal double differential), 3.7 +/- 0.2 (double differential), and 3.0 +/- 0.1 ms (optimized wavelet filter). In conclusion, the new class of spatial filters with the proposed signal-based optimization of the transfer function allows better discrimination of individual motor unit activities in surface EMG recordings than it was previously possible.
    [Abstract] [Full Text] [Related] [New Search]