These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and pharmacological profile of a series of 1-substituted-2-carbonyl derivatives of Diphenidol: novel M4 muscarinic receptor antagonists. Author: Varoli L, Angeli P, Buccioni M, Burnelli S, Fazio N, Marucci G, Recanatini M, Spampinato S. Journal: Med Chem; 2008 Mar; 4(2):121-8. PubMed ID: 18336331. Abstract: Novel 2-carbonyl analogues of diphenidol (1) - bearing lipophylic 1-substituents (2) - were synthesized starting from previously investigated diphenidol derivatives acting as M(2)-selective muscarinic antagonists. These compounds were tested for receptor binding affinity versus human muscarinic M(1)-M(5) receptors stably expressed in CHO-K1 cells. Their activity in functional assays carried out on CHO-K1 cells expressing human M(4) receptors (CHO-hM(4)) and on classical models of M(1)-M(3) receptors, in guinea pig and rabbit tissue preparations, was also evaluated. Compound 2d showed an affinity of pK(i) = 7.73 at the human M(4)-receptor subtype with selectivity ratios ranging from 31-fold (M(4)/M(5)) to 60-fold (M(4)/M(2)). Interestingly this compound, in CHO-hM(4) cells, blocked the inhibition of forskolin-activated cAMP accumulation produced by carbachol (IC(50)= 61 nM) whereas it was a weak muscarinic antagonist in functional tests carried out in guinea-pig and rabbit tissue expressing M(1) (pK(b) = 5.96), M(2) (pK(b) = 6.43) and M(3) (pK(b) = 6.09) receptors. In conclusion, the modifications performed in this work on reference compounds led us to obtain surprisingly a M(4) selective antagonist. Considering the therapeutic indications for M(4) selective antagonists, compound 2d may serve as a novel lead compound for further optimization.[Abstract] [Full Text] [Related] [New Search]